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A model for the deformation of thin viscous sheets of arbitrary shape subject to
arbitrary loading is presented. The starting point is a scaling analysis based on
an analytical solution of the Stokes equations for the flow in a shallow (nearly
planar) sheet with constant thickness T0 and principal curvatures k1 and k2, loaded
by an harmonic normal stress with wavenumbers q1 and q2 in the directions of
principal curvature. Two distinct types of deformation can occur: an ‘inextensional’
(bending) mode when |L3(k1q

2
2 + k2q

2
1)| � ε, and a ‘membrane’ (stretching) mode

when |L3(k1q
2
2 + k2q

2
1)| � ε, where L ≡ (q2

1 + q2
2)−1/2 and ε = T0/L � 1. The scales

revealed by the shallow-sheet solution together with asympotic expansions in powers
of ε are used to reduce the three-dimensional equations for the flow in the sheet
to a set of equivalent two-dimensional equations, valid in both the inextensional
and membrane limits, for the velocity U of the sheet midsurface. Finally, kinematic
evolution equations for the sheet shape (metric and curvature tensors) and thickness
are derived. Illustrative numerical solutions of the equations are presented for a variety
of buoyancy-driven deformations that exhibit buckling instabilities. A collapsing
hemispherical dome with radius L deforms initially in a compressional membrane
mode, except in bending boundary layers of width ∼ (εL)1/2 near a clamped equatorial
edge, and is unstable to a buckling mode which propagates into the dome from that
edge. Buckling instabilities are suppressed by the extensional flow in a sagging inverted
dome (pendant drop), which consequently evolves entirely in the membrane mode. A
two-dimensional viscous jet falling onto a rigid plate exhibits steady periodic folding,
the frequency of which varies with the jet height and extrusion rate in a way similar
to that observed experimentally.

1. Introduction
Thin, highly deformable viscous sheets occur frequently both in technological ap-

plications and in nature. In glass and plastics manufacture, sheets of liquid polymer
are deformed by applied loads chosen such that the sheet achieves some desired shape
(such as that of a bottle or an automobile windshield) before solidifying. A comprehen-
sive survey of such processes, which include film blowing, blow moulding, and extru-
sion, can be found in Pearson (1985). On a different scale, the Earth’s outer shell (litho-
sphere) can be regarded as an assemblage of thin viscous sheets with characteristic
thickness ∼ 100 km and lateral dimension ∼ 1000–10 000 km. The mutual interactions
of these sheets (‘plates’) produces collisional mountain ranges such as the Himalayas,
and initiates the sinking or ‘subduction’ of oceanic plates into the mantle below.
Images of subducted plates obtained using seismic tomography (Hilst, Widyantoro &
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Engdahl 1997) suggest that they undergo complex deformations during their descent,
which may in some cases extend to the core–mantle boundary (2900 km depth).

The aim of this paper is to derive a general theory that can predict how a thin
viscous sheet of arbitrary shape responds to arbitrary applied loads. The primary
factor that controls this response is the sheet curvature. This fact can be appreciated
by recalling some well-known examples of the behaviour of thin elastic shells, which
are closely analogous (modulo a time derivative) to viscous sheets. The enormous
resistance of an eggshell to longitudinal compression, for example, was noted with
wonder by several writers of classical antiquity (Benvenuto 1991, p. 312). Similarly,
it was recognized very early that arches and domes could span a much wider space
than a flat roof of the same thickness. In short, curvature provides strength. We now
know that this is so because shells respond to loads in two fundamentally different
ways: by bending, and by stretching/shortening (the ‘membrane’ response). High
curvature favours a membrane state that is inherently less susceptible to failure than
one dominated by bending, in which large tensional stresses are generated on the
side of the shell away from the centre of bending. Discussions of these points can be
found in most textbooks on elastic shell theory (e.g. Novozhilov 1959; Goldenveizer
1961; Calladine 1983; Niordson 1985; Libai & Simmonds 1998; Ciarlet 1999).

The theory of viscous sheets is much less developed than that of elastic shells.
Beginning with the classic papers of Pearson & Petrie (1970a, b), early viscous sheet
theories focused on the industrial process of film blowing, in which a viscous sheet
inflated by an applied excess pressure deforms by stretching alone. Fliert, Howell &
Ockendon (1995) derived general equations for unsteady blowing of films with arbi-
trary shape, and gave detailed references to previous work. Theories that incorporate
both stretching and bending include those of Buckmaster, Nachman & Ting (1975)
and Ribe (2001); but both are limited to two dimensions. Howell (1996) derived
general equilibrium equations for three-dimensional membrane sheets in lines-of-
curvature coordinates, and Howell (1999) extended these by using general coordinates
and incorporating surface tension. However, neither study considered bending modes.
A fully general theory for three-dimensional sheets that deform by both stretching
and bending does not yet exist.

The focus of this study is on thin or slender sheets whose characteristic thickness is
much smaller than the lateral length scale of their deformation. The goal is to reduce
the full three-dimensional equations of viscous flow to equivalent two-dimensional
equations for the motion of the sheet ‘midsurface’ that are valid asymptotically in the
limit of small slenderness. The starting point is an analytical solution of a simplified
set of equations for ‘shallow’ (nearly planar) sheets, which shows at a glance the
relative roles of stretching and bending and the scalings associated with each. Next,
these scalings are used as the basis for systematic asymptotic expansions from which
composite thin-sheet constitutive relations are determined that are valid for arbitrary
sheets deforming by either stretching or bending. The resulting thin-sheet equations,
complemented by kinematic equations describing the evolution of the sheet thickness
and shape, are then solved numerically for several illustrative model problems.

An essential aspect of the derivation herein is the description of the sheet midsurface
using general non-orthogonal coordinates, rather than orthogonal ‘lines-of-curvature’
coordinates that follow the directions of principal curvature of the midsurface. Lines-
of-curvature coordinates are perfectly adequate for the ‘quasti-static’ problem of
determining the instantaneous flow in a sheet of a given shape subject to given
applied loads (e.g. Howell 1996). However, because a viscous sheet can experience
large deformations, material coordinate lines that are initially orthogonal will not in
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Figure 1. Definition sketch of the model. A viscous sheet has constant viscosity µ, constant excess
density ρ, and variable thickness T (x1, x2, t), where x1 and x2 are general non-orthogonal coordinates
on the sheet midsurface z = 0 and t is time. Creeping (inertialess) flow in the sheet is driven by
buoyancy, by stresses P± applied to the outer surfaces z = ±T/2, and by uniform surface tension.

general remain so. The use of lines-of-curvature coordinates in such a situation would
require numerical remeshing at every time step, which is clearly impractical. General
coordinates avoid this problem by allowing the use of an arbitrary coordinate grid
that deforms along with the sheet.

2. Model geometry
Consider a fluid sheet with constant viscosity µ, constant excess density ρ relative to

an ambient fluid, and variable thickness T (figure 1). Define the sheet ‘midsurface’ as
the surface such that normals to it intersect the sheet outer surfaces at equal distances
T/2. Points in the sheet will be identified by their so-called ‘normal’ coordinates xi,
where x3 ≡ z is the normal distance from the midsurface and x1 and x2 are arbitrary
coordinates on the midsurface. Flow in the sheet is driven by buoyancy, by stresses
P± applied to its outer surfaces z = ±T/2, and by surface tension.

Let T0 be the characteristic thickness of the sheet, so that T/T0 ≡ T̂ (x1, x2, t)
is a function of order unity. Here and henceforth, a superposed hat denotes a
dimensionless variable. The sheet is ‘thin’ if ε ≡ T0/L � 1, where L is the smallest
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lateral length scale (radius of curvature or characteristic wavelength of the applied
load).

Because x1 and x2 are non-orthogonal coordinates, the formalism of differential
geometry and general tensor calculus is required to describe the sheet shape. The
following brief review uses, to the extent possible, the notation of Green & Zerna
(1992, henceforth referred to as GZ), chapters 1 and 10 of which may be consulted
for more detail. Throughout this paper, Latin indices range over the values 1, 2, and
3, Greek indices range over the values 1 and 2 only, and the summation convention
for repeated indices (subscript/superscript pairs) is assumed.

Let r0(x1, x2, t) be the position vector of a point on the midsurface relative to an
arbitrary origin, and let a3(x1, x2, t) be a unit vector normal to the midsurface. Then
the position vector of an arbitrary point in the sheet is

r(x1, x2, z, t) = r0(x1, x2, t) + za3(x1, x2, t). (2.1)

Because the coordinates x1 and x2 may be non-orthogonal, one must distinguish
between covariant and contravariant components of vectors and tensors defined on
the midsurface. The covariant midsurface basis vectors are

aα = r0,α, (2.2)

where a comma denotes partial differentiation with respect to xα. The contravariant
basis vectors aα are just the reciprocals of the covariant ones, and satisfy

aα · aβ = δαβ, (2.3)

where δαβ is the Kronecker delta. The quantities

aαβ = aα · aβ, aαβ = aα · aβ, (2.4)

are respectively the covariant and contravariant components of the (symmetric) metric
tensor of the midsurface.

The second fundamental tensor of the midsurface is its curvature tensor, with
covariant components

bαβ = −aα · a3,β = −aβ · a3,α. (2.5)

These are related to the mixed components bαβ and contravariant components bαβ by
the formulae

bαβ = aαλbβλ = aβλb
αλ, bαβ = aαλb

β
λ , bαβ = aαλb

λ
β, (2.6)

illustrating the general rule that inner multiplication of a surface vector or tensor by
aαβ (or aαβ) is equivalent to raising (or lowering) the appropriate index. The invariant
quantities

H = 1
2
bαα, G = b1

1b
2
2 − b1

2b
2
1, (2.7)

are respectively the mean curvature and the Gaussian curvature of the midsurface. A
third invariant quantity that will prove useful is the ‘curvature modulus’

K ≡ (4H2 − 2G)1/2 = (bαβb
β
α )1/2. (2.8)

The mutually perpendicular principal directions of the curvature tensor are those
with respect to which the midsurface is not twisted, i.e. along which adjacent normals
to the midsurface are coplanar. The principal values k1 and k2 of bαβ are the ‘principal
curvatures’ of the midsurface. In terms of these, the three invariant quantities defined
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above are

H =
k1 + k2

2
, G = k1k2, K = (k2

1 + k2
2)1/2. (2.9)

Because the sheet is curved, the base vectors r,α at points off the midsurface are not
identical to the midsurface base vectors r0,α (see (2.1)). The covariant base vectors gi
and the contravariant base vectors gi at an arbitrary point in the sheet are

gα ≡ r,α = µλαaλ, gα = h−1(µρρδ
α
λ − µαλ)aλ, g3 = g3 = a3, (2.10)

where

µβα = δβα − zbβα (2.11)

and

h = 1− 2Hz + Gz2 (2.12)

is the ratio of an element of surface area at a distance z from the midsurface to
the corresponding area on the midsurface itself. The covariant and contravariant
components of the metric tensor at an arbitrary point in the sheet are

gij = gi · gj , gij = gi · gj . (2.13)

To apply boundary conditions, we shall require a final set of basis vectors that are
respectively tangential and normal to the sheet outer surfaces

r± = r0 ± 1
2
Ta3. (2.14)

Here and henceforth, ± (placed as a subscript or superscript as convenient) indi-
cates that the variable in question is evaluated at z = ±T/2. The covariant and
contravariant tangent vectors to the outer surfaces are

c±α ≡ ±r±,α = ±g±α + 1
2
T,αg3, cα± = ±gα± +

gαλT,λ

2Λ2±
(g3 ∓ 1

2
T,βg

β
±), (2.15)

where

Λ± =
(

1 + 1
4
g
αβ
± T,αT,β

)1/2

. (2.16)

The (outward) unit normal vectors c±3 = c3± ≡ n± are then

n± =
c±1 × c±2
|c±1 × c±2 |

= n±i g
i
±, (n±α , n

±
3 ) = Λ−1

± (− 1
2
T,α, ±1). (2.17)

Note that if T is constant, c±i = ±g±i and ci± = ±gi±. The mean curvatures of the
outer surfaces are

H± = H ± 1
4
(K2T + aαβT |αβ) + O(ε2L−1). (2.18)

A final important notion from differential geometry is that of covariant differentia-
tion with respect to the midsurface coordinates xα. The covariant derivative of a vector
(or tensor) component is just the corresponding component of the partial derivative of
the vector (or tensor) itself, taking into account the variation of the basis vectors from
point to point. Because the covariant derivatives of all components of the metric ten-
sor are zero, the covariant derivative may be thought of as a derivative that follows the
changing metric of a surface. Expressions for the covariant derivatives of surface vec-
tors and tensors are given in chapter 1 of GZ. In what follows, these derivatives will be
denoted by a vertical line; thus uα|β is the covariant derivative of uα with respect to xβ .
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3. Governing equations and boundary conditions
In the theory of thin sheets, the fundamental dynamic quantities are the stress

resultants and bending moments, defined as (weighted) integrals of the stresses across
the sheet. For these integrals to be meaningful, the stresses must be expressed both
per unit area of a single reference surface and relative to base vectors that do not
vary across the sheet. The natural choice for this purpose is the midsurface and its
intrinsic base vectors ai. The stress tensor referred to the midsurface in this way is
(GZ, p. 375)

σiλ = hµλατ
iα, σi3 = hτi3, (3.1)

where τij is the stress tensor per unit local area and relative to the local basis gi. The
tensor σij is not symmetric.

The equations of equilibrium in terms of σij are (GZ, p. 379)

σαβ |α − bβασα3 + σ
3β
,3 = −hρfβ, (3.2a)

σα3|α + bαβσ
αβ + σ33

,3 = −hρf3, (3.2b)

where fiai is the gravitational acceleration. The constitutive relations for a Newtonian
fluid are

τij = −pgij + 2µgikgjlekl , (3.3)

where p is the pressure and eij is the strain rate tensor given by (GZ, p. 381)

2eαβ = µλβ(uλ|α − bλαu3) + µλα(uλ|β − bλβu3) (3.4a)

2eα3 = u3,α + uα,3 + bλα(uλ − zuλ,3), (3.4b)

e33 = u3,3. (3.4c)

Finally, incompressibility of the fluid requires gijeij = 0, or equivalently

(hu3),3 + [aαβ + z(bαβ − 2Haαβ)]uα|β = 0. (3.5)

3.1. Global force and torque balance

Equations for global force balance are obtained by integrating (3.2a) and (3.2b) across
the sheet, yielding

nαβ |α − bβαqα +Pβ = 0, (3.6a)

qα|α + bαβn
αβ +P3 = 0, (3.6b)

where

nαβ =

∫ T/2

−T/2
σαβ dz, qα =

∫ T/2

−T/2
σα3 dz (3.7)

are ‘stress resultant’ tensors,

Pj = fj
∫ T/2

−T/2
ρh dz +Fj

+ +Fj
−, (3.8)

and

Fj
± = Λ±σij±n

±
i (3.9)

are the components of stress applied in the directions aj to the sheet outer surface, but

measured per unit area of the midsurface. The normal vector n±i (1 Latin subscript)
should not be confused with the stress resultant tensor nαβ (two Greek superscripts).
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The equation for global torque balance is obtained by multiplying (3.2a) by z and
then integrating, yielding

mαβ |α − qβ +Mβ = 0, (3.10)

where

mαβ =

∫ T/2

−T/2
σαβz dz, (3.11)

is the ‘bending moment’ tensor and

Mβ = fβ
∫ T/2

−T/2
ρhz dz +

T

2
(Fβ

+ −Fβ
−) (3.12)

is the applied moment vector.
The global force balance equations (3.6) can now be simplified by using (3.10) to

eliminate qβ and by introducing (symmetric) ‘effective’ stress resultant and bending
moment tensors (Budiansky & Sanders 1967; Niordson 1985)

Nαβ = nαβ + b
β
λm

λα, Mαβ = 1
2
(mαβ + mβα). (3.13)

The resulting equations are

Nαβ |α − 2bβλM
λα|α − bβλ |αMλα +Pβ − bβαMα = 0, (3.14a)

Mαβ |αβ − bαλbλβMαβ + bαβN
αβ +P3 +Mα|α = 0. (3.14b)

3.2. Boundary conditions

Let

P± = P±i c
i
± = P i

±c
±
i (3.15)

be the vector stress applied to the outer surfaces of the sheet, per unit areas of those
surfaces (not of the midsurface). Thus P±α or Pα± are the tangential components of
the applied stress, and P±3 = P 3± are the normal components. Continuity of stress at
the outer surfaces then requires

τ
ij
±n
±
i g
±
j = P± ± 2γH±n±, (3.16)

where γ is the coefficient of surface tension (assumed constant). Recall that the bound-
ary stresses appear in the global force balance equations only in the combinations
Fj
± defined by (3.9). Expressions for these quantities in terms of the components of

P± are obtained by projecting (3.16) onto the base vectors a3 and aα, yielding

F3
± = h±(±P 3

± + 2γH±) + 1
2
T,αP

α
± + O(ε2|P |), (3.17a)

Fα
± = ±h±Pα

± − 1
2
TbαβP

β
± − 1

2
aαβT,β(P 3

± ± 2γH±) + O(ε2|P |). (3.17b)

4. ‘Shallow-sheet’ scaling analysis
Let us first develop an intuitive understanding of how viscous sheets respond to

applied loads. Consider a ‘shallow’ sheet of constant thickness T0 whose midsurface
departs from a reference plane by an amount much smaller than its principal radii
of curvature. The metric tensor for such a sheet is nearly equal to that of a plane.
Accordingly, the equations governing the flow in a shallow sheet can be simplified by
neglecting the effects of curvature on the metric tensor while retaining them elsewhere
in the equilibrium equations. Such an approximation is consistent because the former
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effects are proportional to the square of the curvature, whereas the latter are linear in
the curvature. The solution presented below corresponds to a more accurate version
of the Donnell–Mushtari–Vlasov theory of shallow elastic shells (Niordson 1985,
chap. 15).

Let xα be orthogonal ‘lines-of-curvature’ coordinates parallel to the directions of
the principal curvatures b1

1 ≡ k1 and b2
2 ≡ k2 of the midsurface. The components of

the metric tensor of the sheet are approximately a11 = a22 = 1, a12 = a21 = 0. If we
suppose further that k1 and k2 are constant, then the coefficients of the continuity and
momentum equations become independent of x1 and x2. Consider the flow driven
by a normal stress P cos q1x1 cos q2x2 applied to the upper surface z = T0/2, and
suppose for simplicity that the lower surface z = −T0/2 is stress-free. Then the
velocity components (u1, u2, u3) ≡ (u, v, w) and the pressure p within the sheet have the
forms

u =
PL

µ
sin q1x1 cos q2x2

J∑
j=0

ujẑ
j , v =

PL

µ
cos q1x1 sin q2x2

J∑
j=0

vj ẑ
j , (4.1a)

w =
PL

µ
cos q1x1 cos q2x2

J∑
j=0

wjẑ
j , p = P cos q1x1 cos q2x2

J−1∑
j=0

pjẑ
j , (4.1b)

where L ≡ (q2
1 + q2

2)−1/2 is the wavelength of the applied load, ẑ = z/T0, and uj , vj , wj
and pj are dimensionless coefficients. A value J = 4 is sufficient to predict correctly
all quantities of interest in the thin-sheet limit ε→ 0.

Substitution of (4.1) into the governing equations (3.2)–(3.5) and the boundary
conditions (3.16) with P

j
− = γ = 0 and P

j
+ = Pδ

j
3 yields a set of nineteen linear

algebraic equations for the coefficients uj , vj , wj and pj . In writing the solutions, it is
convenient to define dimensionless curvatures (K1,K2) = L(k1, k2) and dimensionless
wavenumbers (Q1,Q2) = L(q1, q2), where Q2

1 + Q2
2 = 1 by virtue of the definition of L.

Also, let G ≡K1K2,H≡ (K1+K2)/2, andK≡ (K2
1+K2

2)
1/2 be the dimensionless

Gaussian curvature, mean curvature, and curvature modulus, respectively, of the
midsurface.

The solutions required for our purposes are

w0 =
3

ε∆
, (4.2a)

u0 =
3Q1[2(K1 −K2) + 3I]

2ε∆
, (4.2b)

u1 = −3Q1[2(K2
1 −G− 1) + 3(K2

1Q2
2 + GQ2

1)]

2∆
, (4.2c)

p0 =
6I+ ε2H(3K2 −G− 3)

2ε∆
, (4.2d)

p1 = −3[2− 2IH+ 3I2 − 2K2]

∆
, (4.2e)

where

I =K1Q2
2 +K2Q2

1, (4.2 f )

∆ = 9I2 + ε2[(1−K2)2 + G(1−K2 + G)] (4.2g)
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The solutions for v0 and v1 are obtained from those for u0 and u1 by interchanging the
subscripts 1 and 2. In reality, each of the numerators and denominators of (4.2a–g) is
an infinite power series in ε, of which only the leading terms are shown.

The two terms in the denominator ∆ correspond to the membrane and inextensional
modes of deformation. In the membrane limit, the first term is dominant, and the
sheet responds to a load by stretching (w0 ∼ ε−1). The second term is dominant in
the inextensional limit, where the sheet responds by bending (w0 ∼ ε−3). In general, a
sheet responds to a load by both mechanisms. The relative importance of the bending
response can be measured by a ‘dissipation number’ D (0 6 D 6 1), defined as the
ratio of the rate of energy dissipation due to bending to the total (bending plus
stretching) dissipation rate. Direct calculation using the shallow-sheet solution yields

D =
ε2f(K,G, φ)

I2 + ε2f(K,G, φ)
, (4.3)

where f is a function ofK, G, and φ ≡ tan−1(Q2/Q1) that is of order unity in the limit
K→ 0. The angle φ ranges from 0 when the load varies only in the x1-direction to
π/2 when it varies only in the x2-direction. Equation (4.3) shows that loaded viscous
sheets deform primarily by stretching when |I| > ε, and primarily by bending when
|I| < ε.

Figure 2 shows D as a function of φ and the ‘reduced Gaussian curvature’ r =
G/K2 = G/K2, for three values ofK and ε = 0.01. The parameter r spans the entire
range of Gaussian curvature, from r = −1/2 for a catenoidal sheet to r = 0 for a
flat or cylindrical sheet to r = 1/2 for a spherical sheet. Figure 2 shows that K = ε
is the ‘critical’ curvature modulus for which stretching and bending are of roughly
equal importance. In general, K > ε favours stretching and K < ε favours bending,
except in the neighbourhood of an ‘inextensional’ line sin2 φ = k2/(k2 − k1) (black
lines in figure 2), where I vanishes. Along this line, the sheet responds to the applied
load by bending no matter how large K may be. The existence of the inextensional
line explains the fact, well known to structural engineers, that the behaviour of elastic
shells with negative Gaussian curvature often cannot be adequately modelled using
membrane theory alone. It is important to note that inextensionality depends both on
the sheet geometry and on the loading distribution. For example, a cylindrical sheet
(r = 0) is inextensional if the loading varies only in the azimuthal direction (φ = 0),
but not if it varies also in the axial direction.

The shallow-sheet solution obtained above reveals how the variables u, v, w and p
scale as functions of ε. The solutions show, first, that the quadratic terms u2, v2 and
p2 are always small relative to the corresponding constant terms (u0, v0, p0) and linear
terms (u1, v1, p1). Accordingly, the scales for u, v and p are max(u0, u1), max(v0, v1),
and max(p0, p1), respectively. Second, because w0 � w1, w2, the scale for w is simply
that for w0. There are two distinct scaling regimes, according to whether the first or
the second term in (4.2g) is dominant. Suppose first that I = O(1), so that the second
(bending) term in (4.2g) is negligible. AssumingK = O(1), we obtain the ‘membrane’
scaling

u, v, w ∼ PL

µ
ε−1, p ∼ Pε−1. (4.4)

If on the other hand |I| � ε, we find the ‘inextensional’ scaling

u, v, w ∼ PL

µ
ε−3, p ∼ Pε−2. (4.5)
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Figure 2. Dissipation number (4.3) for an harmonically loaded shallow sheet as a function of
reduced Gaussian curvature r = G/K2 and φ = tan−1(Q2/Q1), for ε = 0.01 and K/ε = 0.3
(bottom), K/ε = 1.0 (middle), and K/ε = 3.0 (top). Black line is the inextensional line I = 0.

The assumption K = O(1) used to obtain the scales (4.4) and (4.5) is not strictly
speaking consistent with the shallow-sheet approximation, which requires the dimen-
sionless curvatures to be small. To test the validity of (4.4) and (4.5), I determined
exact analytical solutions for the flow in harmonically loaded cylindrical and spherical
sheets of constant thickness. These solutions show directly that the scales (4.4) and
(4.5) are correct for sheets with arbitrary curvature up to K = O(1).

5. Thin-sheet constitutive relations
The next step is to determine the appropriate constitutive relations for thin viscous

sheets. In the limit ε → 0, a viscous sheet behaves as a surface of effectively zero
thickness with finite resistances to stretching and bending, measured respectively
by the stress resultant and bending moment tensors Nαβ and Mαβ . The thin-sheet
constitutive relations specify how Nαβ and Mαβ depend on the two tensors that
describe the rate of deformation of the midsurface: the strain rate tensor

∆αβ = 1
2
(Uα|β +Uβ |α)− bαβU3 (5.1)
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and the rate of change of curvature tensor

Ωαβ = U3|αβ − bλαbλβU3 + bλαUλ|β + bλβUλ|α + bλβ |αUλ, (5.2)

where Ui ≡ ui(z = 0) is the fluid velocity at the midsurface. In fact, the tensors ∆αβ
and Ωαβ need not be known in advance; they will appear naturally in the course of
the asymptotic expansions below.

5.1. Asymptotic expansion: membrane limit

The thin-sheet constitutive relations can be determined by expanding the primitive
variables ui and p in powers of the small parameter ε. Related expansion techniques
have long been used in elastic shell theory (e.g. Goldenveizer 1963; Sanchez-Palencia
1990). The powers of ε in the leading terms of these expansions are those revealed by
the shallow-sheet scaling analysis of the previous section, where we saw that distinct
scalings exist for membrane (stretching) and inextensional (bending) deformations.
We therefore require separate asymptotic expansions for these two limits. Much
unnecessary labour can be avoided by expanding ui and p directly in double power
series in ε and the dimensionless normal coordinate ẑ.

In view of the scalings (4.4), the appropriate expansions in the membrane limit are

ui =
PL

µε

∑
m=0

∑
n=0

εmẑnu
(mn)
i , p =

P

ε

∑
m=0

∑
n=0

εmẑnp(mn), (5.3)

where the coefficients u(mn)
i and p(mn) are dimensionless functions of the lateral co-

ordinates xα. To simplify the notation, define dimensionless curvatures (b̂αβ , b̂
β
α , Ĥ) =

L(bαβ, b
β
α , H) and dimensionless strain rate and rate of change of curvature tensors

∆
(n0)
αβ = 1

2
(u(n0)
α |β + u

(n0)
β |α)− b̂αβu(n0)

3 , (5.4a)

Ω
(n0)
αβ = u

(n0)
3 |αβ − b̂λαb̂λβu(n0)

3 + b̂λαu
(n0)
λ |β + b̂λβu

(n0)
λ |α + b̂λβ |αu(n0)

λ , (5.4b)

which are related to the dimensional tensors ∆αβ and Ωαβ by

∆αβ =
P

εµ
[∆(00)

αβ + ε∆
(10)
αβ + O(ε2)], Ωαβ =

P

εµL
[Ω(00)

αβ + εΩ
(10)
αβ + O(ε2)]. (5.5)

Flow in the sheet can be driven by buoyancy and surface tension in addition to
applied surface forces. For the purposes of asymptotic expansion, I shall assume that
the effective loads due to buoyancy and surface tension are of the same order as those
due to surface forces. By (3.8) and (3.16), this requires

ρgL ∼ ε−1P , γ ∼ LP . (5.6)

Now substitute the expansions (5.3) into the governing equations (3.2)–(3.5) and the
boundary conditions (3.16), and require terms proportional to the same powers of ε
and ẑ in each equation to vanish separately. We thereby obtain a set of coupled linear
algebraic equations for the coefficients u(mn)

i and p(mn) that can be solved sequentially.
The leading-order expressions for the (dimensional) tensors Nαβ and Mαβ in terms of
these coefficients are

Nαβ

LP
= T̂ [2aαρaβλ∆(00)

ρλ − aαβp(00)], (5.7a)
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Mαβ

L2P
= − 1

12
ε2T̂ 3[aαβp(11) + (b̂αβ − 2Ĥaαβ)p(00) + 2b̂αλb̂

λβu
(00)
3 + 2b̂αβu(11)

3

−(aαρb̂βλ + aβρb̂αλ)u(00)
ρ |λ − (aαρaβλ + aβρaαλ)u(11)

ρ |λ
−(aαρb̂βλ + aβρb̂αλ − 4Ĥaαρaβλ)∆(00)

ρλ ]. (5.7b)

For clarity, coefficients u(mn)
i and p(mn) that will later prove to be identically zero have

been omitted from the above expansions. The remaining non-zero coefficients are

u(11)
α = −u(00)

3,α − b̂βαu(00)
β , u

(11)
3 = −aαβ∆(00)

αβ , (5.8a)

p(00) = −2aαβ∆(00)
αβ , p(11) = 2[aαβΩ(00)

αβ − b̂αβ∆(00)
αβ ]. (5.8b)

By substituting (5.8) into (5.7) and rewriting the results in terms of dimensional
variables using (5.5), we obtain

Nαβ = 4µTAαβλρ∆λρ, (5.9a)

Mαβ = − 1
3
µT 3(AαβλρΩλρ +Bαβλρ∆λρ), (5.9b)

where

Aαβλρ = 1
4
(aαλaβρ + aαρaβλ) + 1

2
aαβaλρ, (5.10a)

Bαβλρ = 1
4
[8HAαβλρ − 2aαβbλρ − 4aλρbαβ − 3(aαρbβλ + aβρbαλ)]. (5.10b)

5.2. Asymptotic expansion: inextensional limit

The appropriate expansions for this case are

ui =
PL

µε3

∑
m=0

∑
n=0

εmẑnu
(mn)
i , p =

P

ε2

∑
m=0

∑
n=0

εmẑnp(mn). (5.11)

The dimensional strain rate and rate of change of curvature tensors have the expan-
sions

∆αβ =
P

εµ
[∆(20)

αβ + ε∆
(30)
αβ + O(ε2)], Ωαβ =

P

ε3µL
[Ω(00)

αβ + εΩ
(10)
αβ + O(ε2)], (5.12)

where the results

∆
(00)
αβ = ∆

(10)
αβ = 0, (5.13)

implying that the sheet is inextensional to order ε2, have been anticipated. The
leading-order expressions for the moments are

Nαβ

LP
= T̂ [2aαρaβλ∆(20)

ρλ − aαβp(10)]

+
T̂ 3

12
{2(Ĥaαβ − b̂αβ)p(01) − aαβp(12) − 4Ĥb̂αλb̂

λβu
(00)
3 − 2b̂αβu(22)

3

+[aαλb̂βρ + aβλb̂αρ − 2aαρ(Ĥaβλ − b̂βλ)− 2aαλ(Ĥaβρ − b̂βρ)]u(11)
ρ |λ

+2Ĥ(aαρb̂βλ + aβρb̂αλ)u(00)
ρ |λ}, (5.14a)

Mαβ

L2P
= − T̂

3

12
[aαβp(01) − (aαρb̂βλ + aβρb̂αλ)u(00)

ρ |λ
+2b̂αλb̂

λβu
(00)
3 − (aαρaβλ + aβρaαλ)u(11)

ρ |λ]. (5.14b)
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Again, coefficients that will later prove to be identically zero have been omitted from
the above expansion. The non-zero coefficients are

u(11)
α = −u(00)

3,α − b̂βαu(00)
β , p(12) = b̂αβΩ

(00)
αβ , (5.15a)

p(01) = 4u(22)
3 = 2aαβΩ(00)

αβ , (5.15b)

p(10) = −2aαβ∆(20)
αβ + 1

4
T̂ 2(2Ĥaαβ + b̂αβ)Ω(00)

αβ . (5.15c)

By substituting (5.15) into (5.14) and using (5.12), we obtain

Nαβ = 4µTAαβλρ∆λρ + µT 3CαβλρΩλρ, (5.16a)

Mαβ = − 1
3
µT 3AαβλρΩλρ (5.16b)

where

Cαβλρ = 1
12

[8HAαβλρ − 2aαβ(3Haλρ + 2bλρ)

−aαρbβλ − aβρbαλ − 2(aαλbβρ + aβλbαρ)− 5aλρbαβ]. (5.17)

5.3. Higher-order expansions

When the asymptotic expansions described above are continued to higher order,
it becomes necessary to apply the boundary conditions. Additional inhomogeneous
terms then appear in the expressions for Nαβ and Mαβ . In the membrane limit, these
terms are

Nαβ = (. . .) + 1
2
T {P+

3 + P−3 + γ[aλρT |λρ +K2T ]}aαβ, (5.18a)

Mαβ = (. . .)− T
3

24
[2ρf3a

αβ + (2Haαβ− bαβ)(P+
3 +P−3 )−Dαβλρ(P+

λ |ρ +P−λ |ρ)], (5.18b)

where

Dαβλρ = aαλaβρ + aαρaβλ + aαβaλρ (5.19)

and (. . .) denotes the results of the one-term expansion obtained previously. The
analogous results for the inextensional limit are

Nαβ = (. . .) + 1
2
T (P+

3 + P−3 )aαβ, Mαβ = (. . .) + 1
20
T 2(P+

3 − P−3 + 4γH)aαβ. (5.20)

5.4. Composite expansions

Uniformly valid composite expressions for Nαβ and Mαβ can now be obtained simply
by gathering together the distinct terms that appear in the expressions for the
membrane and inextensional limits. The results are

Nαβ = 4µTAαβλρ∆λρ + µT 3CαβλρΩλρ
+ 1

2
T (P+

3 + P−3 )aαβ

+ 1
2
γT [aλρT |λρ +K2T ]aαβ, (5.21a)

Mαβ = − 1
3
µT 3(AαβλρΩλρ +Bαβλρ∆λρ)

− 1
24
T 3[2ρf3a

αβ + (2Haαβ − bαβ)(P+
3 + P−3 )−Dαβλρ(P+

λ |ρ + P−λ |ρ)]
+ 1

20
T 2(P+

3 − P−3 + 4γH)aαβ. (5.21b)
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The inhomogeneous terms on the second and third lines of (5.21a) and (5.21b) are
those that appear at second and third order in the asymptotic expansions, respectively.

The final set of thin-sheet equations is now obtained by substituting (5.21) and
(3.17) into (3.14). This yields three coupled equations for the velocity components Ui

at the sheet midsurface.

6. Accuracy
The best way to evaluate the accuracy of the thin-sheet equations is to compare their

solutions with exact analytical solutions of the equations of three-dimensional viscous
flow. However, because few such solutions are available, we may instead compare
solutions of simplified forms of the three-dimensional and thin-sheet equations that
are valid for the special case of a shallow sheet with locally constant curvature. This
approach is valid as long as both sets of equations are simplified in the same way,
and has the advantage that it can be used for shells with arbitrary curvature.

As an illustration, consider the problem of a normally loaded shallow sheet treated
in § 4. The solutions of the three-dimensional equations are given by (4.1) and (4.2),
but with all numerators and denominators in (4.2) expanded to higher order in ε.
The analogous set of thin-sheet equations is obtained by writing (3.14) and (5.21)
with respect to orthogonal lines-of-curvature coordinates, making the shallow-sheet
approximation a11 = a11 = a22 = a22 = 1, and setting γ = P

j
− = 0 and P j

+ = Pδ
j
3. The

resulting equations are then solved by assuming that the velocity components depend
on x1 and x2 as in (4.1). For comparison, we shall also determine the error inherent in
an alternative set of thin-sheet equations based on the simplifed constitutive relations

Nαβ = 4µTAαβλρ∆λρ, Mαβ = − 1
3
µT 3AαβλρΩλρ, (6.1)

which are identical (modulo a time derivative) to the incompresible limit (Poisson’s
ratio = 1/2) of Koiter’s (1970) constitutive relations for elastic shells.

Define the relative error of a quantity X as

δ(X) =
XTS −X3D

X3D

, (6.2)

where XTS and X3D are the values of X predicted by the thin-sheet and the three-
dimensional solutions, respectively. It suffices to calculate the errors δ(∆αα) and δ(Ωα

α)
of the dilatation rate ∆αα and the total rate of change of curvature Ωα

α . These errors are
functions of four independent variables, which may be chosen as K, I, G/K2 ≡ r,
and ε. For simplicity, consider only the cases r = 1/2 (sphere) and r = 0 (cylinder);
the errors for r = −1/2 (catenoid) are nearly identical to those for the sphere.

Let δR and δK denote the relative errors predicted using the full constitutive equa-
tions (5.21) and the ‘Koiter’ constitutive relations (6.1), respectively. For a spherical
(r = 1/2) sheet, the errors depend only on I ≡ K/

√
2 and ε, and are, to order of

magnitude,

δR(∆αα) ∼ ε2, δR(Ωα
α) ∼ ε2[I4, ε2]

[I2, ε2]
, (6.3a)

δK(∆αα) ∼ ε[I4, ε4]

[I3, ε2I, ε5],
δK(Ωα

α) ∼ ε[I3, ε3]

[I2, ε2]
, (6.3b)

where [ ] denotes the maximum of the enclosed quantities. The vertical axis of
figure 3(a) shows the power of ε to which the errors (6.3) are proportional when I is
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Figure 3. Orders of magnitude of the errors δ of the thin-sheet predictions of the stretching rate
∆αα and the bending rate Ωα

α , relative to an analytical solution for a normally loaded shallow sheet.
Verical axis shows the power of ε to which the error is proportional when I is proportional to
the power of ε shown on the horizontal axis. Symbols ∆ and Ω indicate the errors of ∆αα and
Ωα
α , respectively. Subscripts R and K denote the errors that result from using the full constitutive

relations (5.21) and the ‘uncoupled’ constitutive relations (6.1), respectively. (a) Spherical sheet
(r = 1/2); (b) cylindrical sheet (r = 0) with K = O(1).

proportional to the power of ε on the horizontal axis. Breaks in slope of the various
lines occur where the dominant terms in the numerators and/or denominators of
(6.3) change. The accuracy of the full thin-sheet equations is of order ε2 or better in
all cases. By contrast, the predictions of the simplified equations achieve this accuracy
only for Ωα

α when I 6 ε and for ∆αα when I = ε.
The errors for a cylindrical sheet depend in general on both I and K, which are

independent quantities when r 6= 1/2. These errors are

δR(∆αα) ∼ ε2, δR(Ωα
α) ∼ ε2[I3K, ε2]

[I2, ε2]
, (6.4a)

δK(∆αα) ∼ ε[I4, εI2K, ε3K, ε4]

[I3, ε2I, ε4K, ε5],
δK(Ωα

α) ∼ ε[I3, ε3]

[I2, ε2]
. (6.4b)

The errors (6.4) are shown for K ∼ 1 in figure 3(b). Again, the errors δR of the full
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thin-sheet equations are everywhere of order ε2 or better, while those of the simplified
theory achieve that accuracy only under restricted conditions.

In conclusion, recall that the shallow-sheet analytical solution from which the
above error estimates were obtained is strictly speaking valid only when K� 1. To
test the range of validity of (6.3) and (6.4), I calculated the errors of the thin-sheet
predictions of ∆αα and Ωα

α relative to exact analytical solutions for harmonically loaded
spherical and cylindrical sheets. The orders of magnitude of the resulting errors agree
exactly with (6.3) and (6.4) for arbitrary K, demonstrating that the shallow-sheet
approximation yields correct error estimates even for sheets with K ∼ 1. Thus
one may presume that the error estimates found in this section are generally valid,
although a rigorous proof remains to be found.

7. Evolution of the sheet shape
Because the sheet is assumed to have no inertia, time plays no intrinsic role in its

dynamics: the flow is determined entirely by the instantaneous geometry of the sheet
and the distribution of loads acting on it. However, in most situations of interest
both the geometry and the loading will themselves change with time. We therefore
require additional kinematic equations that describe the evolution of the sheet shape
and thickness.

Define the ‘midsurface velocity’ V as

V ≡ Vλaλ + V3a
3 ≡ Vλaλ + V 3a3 =

∂r0

∂t
. (7.1)

Because the midsurface is not a material surface, the midsurface velocity V is not
exactly equal to the fluid velocity U evaluated at the midsurface. However, it is
demonstrated in the Appendix that their difference vanishes in the thin-sheet limit
ε → 0. This allows us to ignore the distinction between U and V in the derivation
that follows, and to regard the midsurface as a material surface to within an error of
order ε2.

Consider first the rate of change of the metric tensor, namely

∂aαβ

∂t
≡ ∂

∂t
(aα · aβ). (7.2)

Now
∂aα
∂t

=
∂

∂t
r0,α = (Vβaβ + V 3a3),α. (7.3)

By expanding the derivatives, applying the Weingarten–Gauss relations

aβ,α = Γλ
βαaλ + bαβa3, a3,α = −bβαaβ, (7.4)

substituting the results into (7.2), and setting V = U , we obtain

∂aαβ

∂t
= 2∆αβ (7.5)

where ∆αβ is defined by (5.1).
The rate of change of the curvature tensor is

∂bαβ

∂t
≡ ∂

∂t
(a3 · aα,β). (7.6)
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Upon using (7.3), (7.4), and the relation

∂a3

∂t
= −(Vαbαβ + V 3

,β)aβ ≡ ωβaβ, (7.7)

and setting V = U , (7.6) becomes

∂bαβ

∂t
= Ωαβ (7.8)

where Ωαβ is defined by (5.2).
The derivation of the evolution equation for the thickness T begins from the fact

that the outer surfaces of the sheet are material surfaces. The convective derivative
of a function Γ = Γ (x1, x2, z, t) is (Fliert et al. 1995)

DΓ

Dt
=
∂Γ

∂t
+

(
u− V − z ∂a3

∂t

)
· ∇Γ . (7.9)

The quantity in parentheses in (7.9) is just the fluid velocity in a coordinate frame that
translates with velocity V and rotates with angular velocity ∂a3/∂t. The condition
that particles on the surfaces z = ±T/2 ≡ Γ remain there is thus

u±3 − V3 = ±1

2

∂T

∂t
± 1

2h
(µρρδ

λ
α − µλα)

(
uα± − Vα ∓ T

2
ωα

)
T,λ, (7.10)

where the definition (7.7) for ωα and the relation ∇T = gαT,α have been used.
By integrating the continuity equation (3.5) across the sheet we obtain

h+u+
3 − h−u−3 = −Iα|α + 1

2
(uα+ + uα−)T,α

+(2Hδλα − bλα)[Jα|λ − 1
4
TT,λ(u

α
+ − uα−)], (7.11)

where

Iα =

∫ T/2

−T/2
uα dz, Jα =

∫ T/2

−T/2
zuα dz. (7.12)

A second, independent expression for the quantity h+u+
3 − h−u−3 can be formed by

combining the two (±) parts of (7.10). Equating the two expressions and simplifying,
we obtain(

1 +
GT 2

4

)
∂T

∂t
= 2HTV3 + VαT,α − Iα|α + (2Haαλ − bαλ)

(
Jα|λ − T 2

4
T,λωα

)
.

(7.13)

The evolution equation (7.13) is exact for a sheet of any thickness. However, it can
be simplified considerably for a thin sheet by using the results of the shallow-sheet
scaling analysis. First, this analysis shows that the term proportional to T 2T,λ in (7.13)
is negligible relative to VαT,α in both the membrane and inextensional limits. Second,
by expanding uα in powers of ẑ, we may write

Iα ≈
∫ T/2

−T/2
(Uα + uα1ẑ + uα2ẑ

2 + . . .) dz. (7.14)

Only coefficients uαn with n even contribute to this integral. However, the scaling
analysis shows that uα2, u

α
4, etc. are always smaller than Uα by a factor of at least ε2,

which implies Iα ∼ TUα. Using the definition (5.1) for ∆αβ and noting that GT 2 � 1
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for a thin sheet, we may write (7.13) as

∂T

∂t
= −T∆αα + (2Haαβ − bαβ)Jα|β. (7.15)

Turning now to the last term in the above equation, we find from the scaling analysis
that it is negligible relative to T∆αα in the membrane limit, but of the same order as
T∆αα in the inextensional limit. A simplified form of the term Jα|β that is valid in
the inextensional limit is obtained by noting that the dominant contribution to the
integral Jα is made by the part of the lateral velocity that varies linearly across the
sheet. The asymptotic expansion for an inextensional sheet shows that this part is
uα = zωα, whence (7.15) becomes

∂T

∂t
= −T∆αα + 1

12
(2Haαβ − bαβ)(T 3ωα)|β. (7.16)

The first term on the right-hand side of (7.16) represents the rate of thickening
(thinning) associated with a net shortening (extension) of the sheet midsurface. The
second term is non-zero only when there is a component of bending normal to a
direction of non-zero principal curvature, and arises from the term proportional to z
in the continuity equation (3.5).

8. Illustrative numerical solutions
We shall now study a number of simple model problems that illustrate the par-

titioning of thin-sheet deformation between stretching and bending modes. As for the
shallow-sheet problem considered earlier, an appropriate measure of the intensities of
stretching and bending is the rate of energy dissipation associated with each. The total
(integrated across the sheet) dissipation rate Φ(x1, x2, t) per unit midsurface area can
be determined in both the membrane and inextensional limits using the asymptotic
expansions introduced above. The composite expression that is valid in both limits to
within an error ∼ ε2 is

Φ = 1
2
µAαβρλ(4T∆αβ∆ρλ + 1

3
T 3ΩαβΩρλ) ≡ Φs + Φb. (8.1)

The total dissipation rate is the sum of contributions due to bending (Φb) and
stretching (Φs). The local dissipation number is thus

D(x1, x2, t) =
Φb

Φb + Φs
. (8.2)

8.1. Deformation of viscous domes

Axisymmetric viscous sheets appear in a variety of natural and artificial settings;
perhaps the most common example is an air bubble at the surface of a viscous liquid
such as molten glass or lava. In this subsection, the thin-sheet equations derived
above will be used to study several idealized model problems for the axisymmetric
deformation of a viscous dome under its own weight. The focus will be on the evolving
partitioning of the deformation between stretching and bending modes, particularly
in the form of buckling instabilities.

In solving such problems numerically, it is convenient to take the coordinate
x1 ≡ s as the arclength along a meridian in the current configuration of the sheet.
Axisymmetry implies that the flow does not vary in the x2-direction. Let (ξ(s, t), ζ(s, t))
be the (radial and axial) cylindrical coordinates of a point on the sheet. Then the
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covariant components of the local metric and curvature tensors are (Niordson 1985,
chap. 10)

aαβ =

(
1 0

0 ξ2

)
, bαβ =

(
ζ ′′/ξ′ 0

0 ξζ ′

)
, (8.3)

where primes denote partial differentiation with respect to s. Let deformation of
the sheet be driven by body forces whose components (per unit midsurface area)
in the z- and s-directions are respectively −ρgT (cos θ, sin θ), where g (reverting to
standard notation) is the gravitational acceleration and θ is the sheet inclination from
the horizontal. The outer surfaces of the sheet are assumed to be stress-free, and
surface tension is neglected. Three different sets of end conditions will be considered,
corresponding to a pole, a clamped end, and an end that slides without friction on a
horizontal support:

U = W ′ = q1 = 0 (pole), (8.4a)

U = W = W ′ = 0 (clamped), (8.4b)

U sin θ +W cos θ = q1 = m11 = 0 (sliding). (8.4c)

Solution of the numerical problem requires iteration between a two-point boundary
value problem (determining the quasi-static response of the sheet to a specified
distribution of loads) and an initial-value problem (advancing the sheet geometry
forward in time). The most convenient forms of the quasi-static governing equations
are the global force and torque balance equations (3.6) and (3.10) together with the
definitions (3.13) and the constitutive relations (5.21), with P

j
± = γ = 0. These were

rewritten as a system of six coupled first-order ordinary differential equations for
the variables U(s), W (s), ω1(s) (see (7.7)), q1(s), n11(s), and m11(s), and solved using
the relaxation algorithm of Press et al. (1996). The sheet shape and thickness were
advanced in time using a second-order Runge–Kutta algorithm. The accuracy of the
relaxation algorithm was tested against analytical solutions for the deformation of a
spherical sheet driven by a surface normal load having the form of an axisymmetric
(order m = 0) spherical harmonic Y 0

l of variable degree l. The accuracy of the
time-stepping algorithm was checked by monitoring conservation of mass and by
comparing two independent calculations of the sheet’s total length.

Consider first the deformation of a sheet initially in the form of a hemispherical
dome with radius L and normalized thickness ε = T0/L = 0.01, whose equatorial
edge slides freely on a table. This is the viscous analogue of a classic problem in the
theory of elastic shells (Landau & Lifshitz 1986, p. 57, Problem 2). The evolution
of the sheet shape and dissipation number D are shown in figure 4, where time is
normalized by the scale τ = µ/Lρg. Because no shear stress or bending moment
(q1 = m11 = 0) is exerted on the sheet’s equatorial edge, the initial (t = 0) flow
approximates a pure membrane state (D ≈ 0) that agrees closely (modulo a time
derivative) with the analytical solution of Landau & Lifshitz (1986). Nevertheless, the
latter is not an exact solution of the full thin-sheet equations, which contain bending
terms that are neglected in the membrane equations of Landau & Lifshitz (1986).
The sheet’s initial near-membrane state is inherently unstable, and soon develops a
large-amplitude fold or ‘buckle’ (figure 4a, t/τ = 0.3). A similar instability occurs
in a two-dimensional sheet whose ends are brought together at a constant velocity
(Buckmaster et al. 1975). The complex structure of the flow within the sheet is revealed
by the dissipation number D (figure 4b). At t/τ = 0.2, an incipient bending instability
with a well-defined characteristic wavelength is indicated by the values D > 0 in
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Figure 4. (a) Gravity-driven deformation of an initially hemispherical dome with radius L, nor-
malized thickness ε ≡ T0/L = 0.01, and a freely sliding equatorial edge. Lines show the dome
midsurface, and the time scale is τ = µ/Lρg. (b) Dissipation number defined by (8.2), as a function
of arclength s measured from the top of the dome along a meridian. Different line types are for the
same times as in (a).

the sheet’s lower half, while the rest of the sheet remains in a membrane state. By
t/τ = 0.3, however, the flow comprises regions of nearly pure stretching (D ≈ 0) and
nearly pure bending (D ≈ 1) that alternate along the whole length of the sheet.

The influence of a different boundary condition is seen in figure 5, which shows the
deformation of a dome with a clamped equatorial edge. The initial (t = 0) state of
the sheet is nearly a pure membrane state everywhere except in a bending boundary
layer at the clamped edge. Its width δ can be found from a simple scaling analysis. At
the edge of the bending layer, the moment equation (3.14b) requires M11|11 ∼ b11N

11.
Because the boundary layer length scale is δ,

M11|11 ∼ µT 3∂4
sW ∼ µT 3W

δ4
. (8.5)

The length scale in the membrane region outside the boundary layer is L, whence

b11N
11 ∼ L−1(µT∆11) ∼ µTW

L2
. (8.6)

Equating (8.5) and (8.6) yields δ ∼ ε1/2L. The same scaling is exhibited by bending
boundary layers in elastic shells (Landau & Lifshitz 1986). As time progresses, a
buckling instability develops near the clamped edge, and the effects of bending
propagate progressively into the dome. The whole evolution occurs more rapidly than
for a sliding dome (figure 4) because bending is important from the first instant.

Figure 6 shows what happens when the sliding dome of figure 4 is turned upside
down to form a pendant hollow drop. The initial flow in the drop is identical (to
within a minus sign) to that in the dome. The subsequent evolution, however, is
entirely different, because the total strain rate ∆αα is now extensional everywhere.
Bending instabilities are therefore suppressed, and the drop remains in a membrane
state (D ≈ 0) as it deforms under its own weight. The upper end of the drop thins
most rapidly, and eventually pinches off.

The flows examined above were for simplicity assumed to be strictly axisymmetric.
However, laboratory experiments on the related problem of a bursting viscous bubble
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Figure 5. Same as in figure 4, but for a clamped equatorial edge.

show that the initial axisymmetric membrane (film-draining) state is unstable to a
non-axisymmetric bending mode having the form of meridional ripples (Debrégeas,
de Gennes & Brochard-Wyart 1998; Silveira, Chäıeb & Mahadevan 2000). The thin-
sheet equations derived here could be used to model such non-axisymmetric flows,
but that is beyond the scope of the present study.

8.2. Buckling of viscous jets

The folding or ‘buckling’ of a jet of viscous fluid falling upon a rigid surface is one of
the most easily observed of all fluid mechanical instabilities. The best time to look is
in the morning, when buckling can be seen in a stream of honey falling on toast or of
shower gel falling on a washcloth. An understanding of viscous buckling is important
in the food processing industry, where buckling of fluid jets during container filling
causes unwanted entrainment of air into the product (Tome & McKee 1999). On a
much larger scale, viscous buckling may occur when subducted oceanic lithosphere
encounters a jump in viscosity and/or density at the boundary between the Earth’s
upper and lower mantles at 660 km depth (Griffiths & Turner 1988).

The classic early discussion of fluid buckling was that of Taylor (1969), who pro-
posed that this instability, like its elastic analogue, requires a longitudinal compressive
stress in the jet. Extensive experiments on buckling of both planar and axisymmetric
jets were performed by Cruickshank & Munson (1981). They found that the crit-
ical height for the onset of instability is determined primarily by surface tension,



276 N. M. Ribe

y
L

r /L

0 0.5 1.0
–3.5

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

0

0

1.0

t /ô = 2.2

Figure 6. Same as figure 4(a), but with the dome inverted to form a pendant drop.
The outer surfaces z = ±T/2 of the sheet are shown at each time.

whereas the buckling frequency is influenced also by viscous, gravity and inertia
effects. Further laboratory experiments were performed by Griffiths & Turner (1988),
who studied the buckling of planar and axisymmetric jets incident on density and
viscosity interfaces. The first theoretical studies of the phenomenon were limited to
linear stability analysis of the onset of buckling. Cruickshank (1988) used a thin-layer
theory to predict the critical height and frequency at onset, finding good agreement
with experimental observations when empirical correction factors for geometrical and
surface tension effects were included. Tchavdarov, Yarin & Radev (1993) proposed
a more detailed theory for axisymmetric jets that included gravity and surface ten-
sion effects, and Yarin & Tchavdarov (1996) developed a similar theory for planar
jets. More recent studies have focused primarily on the finite-amplitude behaviour
of the instability. Tome & McKee (1999) used a marker-and-cell method to simulate
the instability numerically without using thin-layer assumptions. Mahadevan, Ryu &
Samuel (1998, 2000) proposed a scaling law for the coiling frequency of axisymmetric
jets that agreed well with experimental measurements. Skorobogatiy & Mahadevan
(2000) solved numerically a set of equations for the bending of an inextensible fluid
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thread whose motion is confined to a plane, and proposed scaling laws for the folding
length and frequency.

The thin-sheet equations derived here are a practical tool for modelling the buckling
of planar jets that deform by both stretching and bending. As an example, consider
the classic configuration of a jet issuing at speed U from a slot of width T0 and
falling towards a rigid plate at a distance L below the slot. Non-dimensionalization
of the thin-sheet equations using the length scale L, velocity scale U, and time scale
L/U shows that the problem involves the three dimensionless groups:

ε =
T0

L
, B =

ρgL2

µU
, S =

γ

µU
. (8.7)

The groups B (buoyancy number) and S (inverse capillary number) are the charac-
teristic ratios of the buoyancy and surface tension forces, respectively, to the viscous
forces.

The numerical solution of this problem was obtained by the methods used in the
previous subsection, using an arclength coordinate x1 ≡ s and metric and curvature
tensors

aαβ =

(
1 0

0 1

)
, bαβ =

(
θ′ 0

0 0

)
. (8.8)

Terms involving surface tension were retained in (3.17) and (5.21). Finally, an idealized
form of the boundary condition at the jet’s leading edge was used, wherein the portion
of the jet downstream of its contact with the plate is instantaneously removed each
time a new contact is formed. Such a condition is appropriate because the portion of
the jet downstream of a no-slip contact is irrelevant to the dynamics of the portion
upstream. A similar boundary condition was used by Skorobogatiy & Mahadevan
(2000).

Figure 7 shows the evolution of the buckling instability for ε = 0.1, B = 50, and
S = 0. The colours in each panel specify which of three distinct deformation states
is dominant at each point in the sheet: membrane-dominated (D 6 1/2) with axial
extension (grey) or compression (white), and bending-dominated (D > 1/2; black).
The number in the upper left corner of each panel is the dimensionless time t′ = tU/L.
The extruded jet initially deforms entirely by stretching, with D = 0 (t′ = 0.40). When
the jet reaches the plate, the boundary condition at its tip suddenly changes from free
to clamped. The lower part of the jet is then in compression, while the upper part
remains in extension (t′ = 0.48). The compressional portion of the jet is unstable to
small perturbations, which develop into a buckle comprising alternating intervals of
membrane- and bending-dominated deformation (t′ = 0.53). With increasing time, the
jet develops a bipartite structure comprising a long and nearly vertical extensional
‘tail’ above a highly deformed bending-dominated region near the plate (t′ > 0.59).
The bending in the latter region generates a periodically alternating series of folds
(t′ = 0.70, 0.77). Figure 8 shows the horizontal position of the sheet midsurface at
y/L = −0.85 as a function of time. After the decay of the initial transient, the jet
settles down to a steady oscillatory state.

The numerically predicted buckling frequencies can be compared directly with the
experimental observations of Cruickshank (1980), who measured the dimensionless
frequency 2πf(T0/g)1/2 as a function of ε−1 for fixed values of the parameters

F =
µU

ρgT 2
0

≡ 1

ε2B
, S ′ =

γ

ρgT 2
0

≡ FS. (8.9)
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Figure 7. Buckling of a two-dimensional viscous jet with viscosity µ and density ρ, extruded
downward with velocity U from a slot of width T0 at y = 0 towards a rigid plate at y = −L.
Case shown is for L/T0 ≡ ε−1 = 10 and B = ρgL2/µU = 50. Numbers at upper left of each panel
are values of dimensionless time tL/U. Colours denote the type of deformation that accounts for
> 50% of the local energy dissipation rate: extension (grey), compression (white), and bending
(black).

Figure 9 shows the experimental data (a) and numerical predictions (b) for S ′ = 0.59
and F = 41 (open symbols) and F = 144 (solid symbols). Reliable numerical solutions
could not be obtained for ε−1 > 35 (with F = 41) or ε−1 > 50 (F = 144.) The
qualitative structure of the experimental and numerical curves is quite similar: in all
cases, the frequency first decreases and then increases as ε−1 increases. However, the
magnitudes of the numerical and experimental frequencies differ in some cases by a
factor of up to about 2, probably due to the large departures from two-dimensionality
in the laboratory experiments (see the Discussion below).

9. Discussion
The goal of this work has been to derive a theory that can predict the response of

a thin viscous sheet of arbitrary shape and thickness to an arbitrary distribution of
applied loads. The result can be regarded as a ‘viscous shell theory’, analogous to the
better-known theory of elastic shells. But there are also several new results that are
not to my knowledge to be found in the literature on elastic shells.

The first is an analytical solution for a shallow doubly curved sheet loaded by an
harmonically varying normal stress, which provides a quantitative and easily compre-
hensible representation of how viscous sheets of arbitrary curvature respond to an
applied load by a combination of stretching and bending. The shallow-sheet equa-
tions used here are of course not exact. Nevertheless, comparison of their solutions
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Figure 9. Comparison of experimentally observed buckling frequencies of planar jets (a; Cruick-
shank 1980, figure 24m) with numerical predictions using the thin-sheet model (b), for S ′ = 0.59
and F = 41 (open symbols) or F = 144 (solid symbols). F and S ′ are defined by (8.9).

with exact solutions of the three-dimensional Stokes equations shows that these differ
only by numerical factors that do not affect the fundamental scalings involved. The
shallow-sheet solution presented here is perhaps a useful alternative to the rather
qualitative general discussions of response to loading that are typically found in
books on elastic shell theory.

A second new result is the explicit expressions (5.10b) and (5.17) for the rheological
tensors Bαβρλ and Cαβρλ that describe the coupling between bending and stretching of
the sheet. Such terms are generally neglected in elastic shell theory, where ‘uncoupled’
constitutive relations such as (6.1) are typically used. Explicit expressions for the



280 N. M. Ribe

coupling terms are satisfying from an asymptotic point of view, and their inclusion
improves the accuracy of the thin-sheet equations (see below).

A third new result is the kinematic equation (7.16) for the sheet’s rate of thickening.
In elastic shell theory, changes in thickness are of little interest and generally ignored.
They are however of great importance for viscous sheets that experience large defor-
mations. Because (7.16) was derived with the aid of the shallow-sheet scaling analysis,
it is asymptotically correct in both the membrane and inextensional limits.

The viscous membrane theory derived by Howell (1999) is a limiting case of the
theory presented here, for a ‘momentless’ sheet in which shear stresses and bending
moments are negligible. Howell (1999) considered deformation driven by buoyancy,
surface tension, and an applied pressure difference ∆P . The force balance equations
for this problem are obtained from (3.6) by setting qα = P

j
+ = 0, P j

− = ∆Pδj3 and
using the constitutive relation (5.21a) for Nαβ ≈ nαβ . Retaining only leading-order
terms, one finds

n
αβ
H |α + 1

2
γTaαβ(aλρT |λρ +K2T )|α + ρTfβ = 0, (9.1a)

bαβn
αβ
H + ∆P + 4γH + ρTf3 = 0. (9.1b)

where nαβH = 4µTAαβλρ∆λρ is the constitutive relation used by Howell (1999). Apart
from differences in notation and non-dimensionalization, (9.1a) and (9.1b) are respec-
tively identical to equations (A5) and (A6) of Howell (1999).

The theory derived here also has some relation to the theory of Newtonian surface
or interfacial flow (Scriven 1960; Aris 1962; Edwards, Brenner & Wasan 1991).
The latter theory considers an interface characterized by a linear relation between
stress and strain, with two intrinsic viscosities that measure the resistance of the
interface to dilatation and shear. However, because the interface is supposed to
have vanishing thickness, the components of interfacial velocity are not functions of
a normal coordinate. Newtonian interfaces are therefore essentially membranes with
zero bending resistance, unlike the sheets of finite thickness considered here. A further
difference is that the two viscosities of interface theory are independent interfacial
parameters, not necessarily related to the viscosity of a bulk fluid phase.

As with any asymptotic theory, it is important to evaluate the errors involved
relative to the exact governing equations and their solutions. The results of such an
evaluation were presented in figure 3, which shows that the errors of the solutions of
the thin-sheet equations derived here are uniformly of order ε2 or better. By contrast,
thin-sheet equations that use the uncoupled constitutive relations (6.1) achieve this
accuracy only under restricted conditions, with errors reaching order unity in some
cases. However, it is important to interpret this result fairly. When I � ε, most of the
dissipation in the sheet is due to bending, so that errors in the stretching rate are of
secondary importance. The converse is true for I � ε, when most of the dissipation
is due to stretching. Accordingly, the most significant curves to compare in figure 3
are the dashed ones for I � ε and the solid ones for I � ε. Evidently the equations
based on the uncoupled constitutive relations do an excellent job in the inextensional
limit I � ε. They do less well in the membrane limit I � ε, where their prediction
of the stretching rate is significantly less accurate than that of the ‘coupled’ theory,
although the error still vanishes in the limit ε → 0. The choice between the two
theories will depend on whether one prefers accuracy (coupled constitutive relations)
or simplicity (uncoupled).

The essence of the dynamics of thin viscous sheets is the complex partitioning
of deformation between stretching (membrane) and bending (inextensional) modes.
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Because the thin-sheet equations derived here include both effects, the partitioning of
the deformation between them is automatically determined as part of any solution. It
proves to be surprisingly complex and variable in space and time. Because the sheet
inertia is negligible, the partitioning at a given instant depends only on three things:
the sheet geometry, the distribution of loads acting on it, and the boundary conditions.
Numerical solutions for gravitationally loaded spherical domes show that a crucial
factor is whether a large-scale membrane state is compressional or extensional, as
originally suggested by Taylor (1969). In the former case, the sheet is subject to
buckling instabilities which develop on a time scale much shorter than that of the
compression itself. The evolution is accelerated if the edge of the dome is clamped
(figure 5), in which case a pure membrane state cannot exist and bending is (locally)
important from the very beginning. The region influenced by bending is initially small,
but quickly expands to fill the whole dome. In fact, this region has a complex structure
comprising alternating intervals of nearly pure bending and nearly pure stretching.
This structure is generally not evident from the shape of the dome midsurface
alone, which is typically quite smooth on the scale of the bending/stretching ‘waves’
(figure 4). An entirely different behaviour obtains if the membrane state is extensional:
buckling instabilities cannot develop and the membrane state persists (figure 6).

We have seen that the thin-sheet equations derived here can be used to model the
well-known buckling instability of viscous jets incident on a rigid surface. While the
numerically and experimentally determined buckling frequencies depend on ε−1 and
the dimensionless extrusion rate F in very similar ways, their magnitudes can differ
by up to a factor of 2 (figure 9). The most likely reason for this is the significant
departures from two-dimensionality in the experiments of Cruickshank (1980), whose
planar jets were extruded from slots of finite length d (5T0 6 d 6 15T0). Because
of surface tension, the along-slot width of the jet decreases from d at the top to
a much smaller value at the bottom (e.g. ∼ 0.2d in figure 3 of Cruickshank &
Munson 1981). Consequently the effective values of ε−1 and F at the bottom of the
jet, where the buckling takes place, are not the same as the nominal values at the
top. The experimental situation could be more accurately modelled using the full
two-dimensional thin-sheet equations, but that is beyond the scope of this paper.

The natural next step is evidently to explore the behaviour of fully three-dimensional
sheets subject to loads with low or no symmetry. The shape of the sheet midsurface
will then be a function of two independent spatial coordinates x1 and x2 and of time.
Solution of such problems will require more sophisticated numerical methods than
those used here.
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(France). I thank V. Barcilon, C. Calladine, A. Davaille, P. Howell, E. Sanchez-
Palencia, and J. Simmonds for helpful discussions. Careful reviews by P. Howell,
H. Stone and an anonymous referee helped greatly to improve the manuscript.
Mathematical manipulations were carried out using Mathematica (Wolfram 1996).

Appendix. Midsurface velocity
Because the sheet midsurface is not material, the fluid velocity U ≡ u(z = 0)

there is not identical to the kinematically defined midsurface velocity V ≡ ∂r0/∂t.
However, the shallow-sheet analytical solution of § 4 shows that U −V → 0 as ε→ 0.
Differentiate (2.14) with respect to t and apply the definitions (7.1) and ∂r±/∂t = u±
(because r = r± are material surfaces). Upon resolving the resulting vector equation
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into lateral and normal components, one obtains

Vα = uα± ∓ 1
2
Taαβωβ, (A 1a)

V 3 = u3
± ∓ 1

2

∂T

∂t
. (A 1b)

Now consider the case of a shallow sheet of constant thickness, for which a11 = a22 = 1,
b11 = k1, b22 = k2, a12 = a21 = b12 = b21 = 0, and T = T0. After using these relations
to simplify (7.13), substitute the result into (A 1b), and replace u in (A 1) by its
shallow-sheet expansion (4.1) and (4.2). The velocities V i ≡ Vi are then determined
by solving (A 1), noting that ∂T/∂t itself depends on V3. The results are

δU1 ≡ U1 − V1

U1

= −3{ε2I− ε3[3 + 2(G−H−K2)]}
2{12[3I+ 2(K1 −K2)]− ε3} , (A 2a)

δU3 ≡ U3 − V3

U3

=
ε2[2 +I(3I− 4H− 1) + 4H− 4K2]

16
. (A 2b)

The expression for (U2−V2)/U2 is obtained from (A 2a) by exchanging the subscripts
1 and 2. Equation (A 2b) shows that δU3 ∼ ε2 under all conditions. Equation (A 2a)
shows that δU1 ∼ ε2 except for nearly flat sheets (K � ε), for which δU1 is larger
(e.g. δU1 ∼ 1 for K ∼ ε3). However, such errors are not significant because the
lateral velocities in a normally loaded flat sheet are asymptotically small relative to
the normal velocity.
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